
08/09/22 20:36StackEdit

Page 1 of 4https://stackedit.io/app#

Recomendador de amigos

Você deve implementar um sistema que permita que uma pessoa obtenha sugestões
de novos amigos se baseando nas amizades já existentes. Você deve criar uma
aplicação Node.js que escute a porta 3000. Armazene dados em memória durante a
execução do programa (não u!lize nenhum banco de dados externo, u!lize variáveis
globais, não serão aceitos testes que dependam da instalação de so"wares externos
para armazenar os dados durante a execução) e implemente as seguintes rotas:

Create Person - [POST] h!p://localhost:3000/person

Esta rota deve receber um CPF e um nome, e realizar o cadastro do usuário. Deve
retornar erro com status code 400 caso o usuário já esteja cadastrado ou o CPF
informado tenha tamanho diferente de 11 dígitos numéricos (Não implemente
qualquer algoritmo validador de CPF).

entrada:

{

"cpf": "12345678909",

"name": "Joaozinho"

}

saída:

Deve retornar código HTTP 200 em caso de sucesso.

Deve retornar código HTTP 400 caso o usuário cadastrado já exista ou caso o
CPF informado não consista de 11 dígitos numéricos

http://localhost:3000/person

08/09/22 20:36StackEdit

Page 2 of 4https://stackedit.io/app#

Get Person - [GET] h!p://localhost:3000/person/:CPF

Esta rota deve receber um CPF e, se o usuário exis!r, retornar seus dados (nome e
CPF), caso contrário, deve retornar erro com status code 404.

saída:

{

"cpf": "12345678909",

"name": "Joaozinho"

}

Clean - [DELETE] h!p://localhost:3000/clean

Esta rota deve limpar todos os dados (pessoas e relacionamentos) em memória.

Create Rela"onship - [POST] h!p://localhost:3000/rela"onship

Esta rota deve receber dois CPFs e, caso os dois usuários existam, criar um
relacionamento entre eles, caso contrário, deve retornar erro com status code 404.

entrada:

{

"cpf1": "11111111111",

"cpf2": "22222222222"

}

http://localhost:3000/person/:CPF
http://localhost:3000/clean
http://localhost:3000/relationship

08/09/22 20:36StackEdit

Page 3 of 4https://stackedit.io/app#

saída:

Deve retornar código HTTP 200 em caso de sucesso.

Deve retornar código HTTP 404 caso um dos usuários não exista

Get Recommenda"ons - [GET]
h!p://localhost:3000/recommenda"ons/:CPF

Deve receber um CPF e retornar erro com status code 400 se o CPF informado não
consis!r em 11 dígitos numéricos, erro com status code 404 se o usuário
correspondente não exis!r. Caso o CPF corresponda a um usuário cadastrado, o
retorno deve ser um Array contendo a lista de CPFs de todos os amigos dos amigos
do usuário informado que não são seus amigos, ordenada de maneira decrescente
pela relevância, ou seja, deve-se verificar quantos amigos tem relacionamento com a
pessoa, e as pessoas com mais relacionamentos com amigos devem ser informados
primeiro. Apenas amigos dos amigos devem ser listados, e devemos ignorar casos nos
quais a pontuação é zero.

Retorno:

[

"11111111111", "22222222222"

]

Exemplo:

http://localhost:3000/recommendations/:CPF

08/09/22 20:36StackEdit

Page 4 of 4https://stackedit.io/app#

A

B C

D E

Neste caso, assumindo que a entrada seja A, o retorno deve ser exatamente [D, E],
nesta ordem, pois 2 amigos de A tem amizade com D, e apenas um amigo de A tem
amizade com E.

Testes

Além das rotas descritas acima, você deve implementar automa!zados para seu
projeto. Os testes podem ser implementados usando o framework de sua preferência,
desde que sejam facilmente executável a par!r do seu projeto.

Seu projeto deve conter um README explicando como executá-lo e deverá ser
disponibilizado no Github (ou ferrramentas similares).

